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The case of simultaneous in-plane and out-of-plane lateral vibrations of small amplitude of
a horizontally rotating #uid-tube cantilever conveying #uid is investigated. The rotation is with
respect to a vertical axis at the "xed end at a constant angular velocity. The diameter of the tube
is constant along its length and much smaller than the length. There is no nozzle attached at the
free end. The #uid-tube cantilever is inextensible. Two inter-dependent equations of motion in
the two directions of lateral displacement of the system are derived by means of Newton's
second law on a #uid-tube element. The same system of equations is derived by means of
Hamilton's principle. An approximate solution is sought in the case of linear vibrations in the
form of a series of normalized eigenfunctions from the linear cantilever beam theory using
Galerkin's method. The critical nondimensional circular frequency of lateral vibration and
critical nondimensional speed of #ow of the #uid-tube cantilever system are investigated for the
in-plane and the out-of-plane case. Comparisons between the in-plane and out-of-plane case,
between the rotating and the nonrotating case, as well as between the rotating with internal
#ow and the rotating case without #ow are discussed. ( 2000 Academic Press
1. INTRODUCTION

THE STATIONARY CANTILEVER TUBE conveying #uid and the rotating uniform cantilever beam
without #ow are the closest prior art to the rotating #exible #uid-tube cantilever system.
The stability of the former two systems has been extensively studied independently of each
other. In the current literature, no distinction has been made between rotating and
nonrotating #uid-tube cantilevers, since only the latter type has been investigated until now.
However, in the present work, the above terminology will be used, in order to distinguish
the rotating type from the nonrotating one.

The earliest published study on the stability of nonrotating #uid-tube cantilevers was by
Bourrières in 1939 (PamKdoussis & Issid 1974), however without computing the critical
conditions for instability of the #uid-tube cantilever system. More complete theoretical and
experimental studies were done later, "rstly for nonrotating articulated pipes (Benjamin
1961a, b) and then for nonrotating continuous horizontal #exible tubular cantilevers
conveying #uid (Gregory & PamKdoussis 1966a, b). The critical conditions for instability for
out-of-plane lateral vibrations of the nonrotating #uid-tube cantilever system have been
calculated using an exact and an approximate method (Gregory & PamKdoussis 1966a).
Research in #uid}structure interaction has seen a vast expansion, to include a variety of
geometry types for the structure and #uid #ow types (Chen 1987; Blevins 1990). Over the
0889}9746/00/010001#24 $35.00/0 ( 2000 Academic Press
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years, there have been cases of practical interest, which have lent themselves as
potential areas of application for theories of #uid}structure interactions involving
cylindrical structures (PamKdoussis 1993). Throughout the research done so far, the
#uid}structure system, seen from a coordinate system "xed in space, does not undergo any
motion other than the #ow of #uid and the oscillatory motion generated by some instability
mechanism.

On the other hand, the model of the uniform rotating beam has been employed to study
the behaviour of rotating rotor blades in a variety of applications. The model of the rotating
cantilever beam has been used to study rotating structures, such as robotic manipulators,
helicopter rotor blades, propeller blades, wind turbines, and turbomachinery. The dynamics
of a rotating cantilever beam di!er from that of the nonrotating one because of the
additional centrifugal sti!ness and Coriolis force terms (Houbolt & Brooks 1957). Extensive
research has been done on the dynamics of helicopter rotor blades in a variety of rotor
con"gurations and load conditions (Johnson 1994). A general theory for coupled #apwise,
chordwise and torsional vibrations under arbitrary loading can be found in Houbolt
& Brooks (1957), along with selected linear applications. An exact solution (Du et al. 1994)
and an approximate formula (Peters 1973) for the natural frequencies and mode shapes for
out-of-plane lateral vibrations of the rotating uniform cantilever linear Euler}Bernoulli
beam have been derived.

The present work links the two aforementioned broad categories of mechanical systems
to represent a system with hybrid characteristics. This is a theoretical investigation of the
operating conditions which may destabilize a hypothetical rotating tubular #uid dispenser.
The system assumes the form of a tubular cantilever beam rotating in a horizontal plane at
a constant angular speed, while delivering a constant #ow at the same time. The linear
Euler}Bernoulli beam model was used, assuming displacements of small amplitude. The
e!ect of shear deformation and rotary inertia are considered to be small when compared
with the e!ect of bending. While preliminary data have been presented earlier (Panussis
& Dimarogonas 1997), this paper contains an expanded range of dynamic stability results.
Also, it compares the case of the rotating #uid-tube cantilever system with the stationary
cantilever conveying #uid, as well as the rotating uniform cantilever beam without inner
#ow.

2. HORIZONTALLY ROTATING FLUID-TUBE CANTILEVER SYSTEM

The tubular cantilever is considered to be of constant inner diameter and section properties,
inextensible, of homogeneous and isotropic material, with mass per unit length m

T
. The

inner diameter D is much smaller than the length ¸. It is assumed that the tube wall
thickness is such that shell-type instabilities do not develop. The #ow in the tube is
considered to be incompressible, with #uid density o

F
and constant #ow velocity ;. The

inner #ow is assumed to remain constant during vibration. That is, any small-scale #ow
details developed on the inner #ow due to small-amplitude lateral vibrations are negligible
compared with the main #ow. The vector of the #ow velocity is always tangent to the
displaced elastic axis of the tubular cantilever and parallel to the unit vector tangent
e
t
(Figure 1). There is no nozzle attached to the free end, and there are no external forces

applied to the system other than gravity and the clamping shear force and bending moment
applied at the "xed end of the cantilever. The #uid-tube cantilever system is considered
without interior or exterior damping.

The "xed end of the #uid-tube cantilever is on the axis of rotation. The #uid-tube
cantilever rotates with respect to an orthogonal inertial coordinate system OX>Z "xed in
space. The vector of the constant angular velocity X coincides with the Z-axis of the
0



Figure 1. Schematic of the coordinate systems and the displacements of the elastic axis of the rotating #uid-tube
cantilever system. The coordinate system Oxyz is attached to the rotating #uid-tube cantilever, whereas OX>Z is

an inertial coordinate system.
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inertial coordinate system. The rotation takes place on the plane OX>. A second ortho-
gonal coordinate system Oxyz rotates with respect to the inertial one at the angular velocity
X

0
. The x-axis coincides with the undisplaced elastic axis of the tubular cantilever. The unit

vectors along the x-, y-, and z-axis are i, j, and k, respectively. The position vector along the
elastic axis is r

0
(x; t)"x i in the undisplaced state. The "xed end of the cantilever corres-

ponds to x"0 and the free end to x"¸. When the rotating #uid-tube cantilever system
vibrates, a #uid-tube element of "nite length dx, at position x on the undisplaced elastic axis,
is displaced through the axial displacement u (x; t), the in-plane lateral displacement v(x; t),
and the out-of-plane lateral displacement w (x; t), in the direction of the x-, y-, and z-axis,
respectively. Hence, in the Oxyz coordinate system, the position vector of the displaced
element is

r (x; t)"[x#u(x; t)]i#v(x; t) j#w (x; t)k. (1)

In this case, the axial displacement u (x; t) is the geometrical result of the lateral displace-
ments v(x; t) and w (x; t). The "nite length ds (x; t) of a #uid-tube element in the displaced
state, can be expressed in terms of the "nite displacements du(x; t), dv(x; t) and dw(x; t),
along the x-, y- and z-axis, respectively,

[ds(x; t)]2"[dx#du(x; t)]2#[dv (x; t)]2#[dw(x; t)]2. (2)

The requirement for inextensibility implies that the #uid-tube element maintains its length
while it vibrates, i.e., at any time instant t, ds (x; t)"dx. When the length dx becomes small,
neglecting the terms of third and higher order yields

Lu(x; t)

Lx
K!

1

2CA
Lv(x; t)

Lx B
2
#A

Lw(x; t)

Lx B
2

D . (3)
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Integration of equation (3) with respect to position t along the undisplaced elastic axis,
from t"0 at the "xed end, to t"x at the current position x, and the geometrical
condition at the "xed end that u (0; t)"0 yield

u(x; t)"!

1

2P
x

0
GC

Lv (t; t)

Lt D
2
#C

Lw(t; t)

Lt D
2

H dt. (4)

The unit vector e
t
(x; t)"Lr (x; t)/Ls (O'Neil 1991) tangent to the displaced elastic axis at

position x at time t becomes

e
t
"

Lr

Lx
. (5)

If R(x; t) is the total curvature of the displaced elastic axis at position x at the time instant t,
measured along the unit vector e

n
(x; t)"(1/R(x; t)) (Le

t
(x; t)/Ls) (O'Neil 1991), normal to the

displaced elastic axis, then

e
n
"

1

R

Le
t

Lx
. (6)

The axial coordinate x is of the same order of magnitude as the length ¸. The lateral
displacements of in-plane and out-of-plane, v(x; t) and w(x; t), are of the same order of
magnitude as the internal diameter D of the rotating #uid-tube cantilever, assumed to be
much smaller than its length ¸. Equation (4) implies that the axial displacement u(x; t) is one
order of magnitude smaller than v (x; t) and w(x; t). Introducing a parameter e, which is
much smaller than unity (e@1), the following relations apply:

O(v/¸)"e, O (w/¸)"e, OA
Lv (x; t)

Lx B"e, OA
Lw(x; t)

Lx B"e, OAC
Lv (x; t)

Lx D
2

B"e2,

OAC
Lw(x; t)

Lx D
2

B"e2, OAC
Lv(x; t)

Lx DC
Lw(x; t)

Lx DB"e2, OA
u (x; t)

¸ B"e2. (7)

3. EQUATIONS OF MOTION

Two di!erent approaches were followed for the derivation of the di!erential equations of
motion. In the "rst method, Newton's second law is applied to a tube element of in"nitesi-
mal length dx in the undisplaced state and of mass m

T
dx; similarly, for the vibrating #uid

element of mass o
F
Adx. From the resulting six equations, two integrodi!erential equations

of motion in v(x; t) and w (x; t) are derived. The geometric and force boundary conditions of
a cantilever beam are well known (Bishop & Johnson 1960). Namely, at the "xed end, the
cantilever beam is constrained to have zero displacement and zero slope. At the free end, the
external bending moment and shear force are zero. The detailed procedure for the deriva-
tion of the equations using Newton's second law can be found in Panussis (1998). In the
following, the methodology for the derivation of the equations of motion using the
Lagrangian method is presented.

In the inertial coordinate system OX>Z, the velocity vector v
T
"v

T
(x; t) of the de#ected

tube element, which was at position x on the undisplaced elastic axis, has two components.
One component is the velocity of the tube element in the rotating coordinate system Oxyz,
equal to the partial derivative with respect to time t of the position vector r(x; t), given in
Equation (1), namely Lr(x; t)/Lt. The second component is due to the rotation of the local
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coordinate system Oxyz with respect to the inertial coordinate system OX>Z, namely
X

0
3 r(x; t). Hence,

v
T
"

Lr

Lt
#X

0
3 r . (8)

Consider the #uid element enclosed in the tube element of length dx in the undisplaced
state, with mass o

F
A dx. In the rotating coordinate system Oxyz in Figure 1, the material

derivative Dr(x; t)/Dt of the position vector r(x; t) of the displaced #uid element in equation
(1) has two components (Currie 1974). One component is due to the fact that the #uid
element follows the motion of the tube element as the latter vibrates, equal to the partial
derivative with respect to time t of the position vector r(x; t), namely Lr (x; t)/Lt. The second
component is due to the internal #ow in the #uid-tube cantilever system, equal to
[;e

t
(x; t) '$]r (x; t). Hence,

Dr

Dt
"

Lr

Lt
#;e

t
. (9)

In the inertial coordinate system OX>Z, the velocity v
F
"v

F
(x; t) of the #uid element, as

in the case of the tube element, has an additional component due to the rotation X
0

of the
coordinate system Oxyz with respect to the inertial coordinate system OX>Z. That
component is equal to the cross-product of the vector of the speed of rotation X

0
with the

position vector r (x; t), namely X
0

3 r(x; t). Hence,

v
F
"

Lr

Lt
#;e

t
#X

0
3 r . (10)

Using equation (8) for the velocity of the tube element v
T
(x; t), the kinetic energy of the

tube in the rotating #uid-tube cantilever system is

¹
T
"

1

2 P
L

0

m
T
(v

T
' v

T
) dx. (11)

With the assumption that, in this case, the shear deformation is small compared to the
bending e!ect, the potential energy of the tube in the rotating #uid-tube cantilever system
includes the #exural energy of elastic bending deformation plus the e!ect of gravity,

<
T
"

1

2 P
L

0

EIA
L2v
Lx2B

2
dx#

1

2 P
L

0

EIA
L2w
Lx2B

2
dx#P

L

0

m
T
gw dx. (12)

Using equation (10), the kinetic energy of the #uid contained at any time within the
rotating #uid-tube cantilever is

¹
F
"

1

2 P
L

0

o
F
A(v

F
' v

F
) dx. (13)

Consider a control volume in the #ow de"ned by the interior of the vibrating tube portion
of the #uid-tube cantilever. The control surface momentarily coincides with the #uid-tube
interface and the plane end-sections of the #ow, at the "xed end x"0 and at the free end
x"¸. The plane end-sections of the #ow are considered perpendicular to the de#ected
x-axis. The constant #ow rate along the tube is o

F
A;. During the "nite time period dt,

a #uid mass equal to o
F
A;dt enters the control volume at the "xed end x"0. Given that

v
F
(0; t)";i, the corresponding "nite in#ow of kinetic energy d¹

*/
(t) is

d¹
*/
"1

2
o
F
A;(v

F
' v

F
)
x/0

dt"1
2
o
F
A;3 dt. (14)
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During the "nite time period dt, a #uid mass equal to o
F
A;dt exits the control volume at

x"¸. The corresponding "nite out#ow of kinetic energy d¹
065

(t) is

d¹
065

"1
2
o
F
A;(v

F
' v

F
)
x/L

dt, (15)

where, v
F
(x; t) is given by equation (10). The net "nite out#ow d¹

&-69
(t) of kinetic energy

through the control surface during the "nite period of time dt is

d¹
&-69

"d¹
065

!d¹
*/
"1

2
o
F
A;[(v

F
' v

F
)
x/L

!;2] dt. (16)

In the limit dtPdt, the #ux ¹Q
&-69

(t) of kinetic energy through the control surface is

¹Q
&-69

"

d¹
&-69

dt
"1

2
o
F
A;[(v

F
' v

F
)
x/L

!;2]. (17)

The total kinetic energy of the #uid, enclosed momentarily in the control volume, equals
the sum of the kinetic energy of the #uid ¹

F
and the kinetic energy d¹

&-69
, which exited from

the control volume due to the #ow ; during the "nite time period dt. Thus,

¹
F
#¹Q

&-69
dt"

1

2 P
L

0

o
F
A(v

F
' v

F
) dx#1

2
o
F
A;[(v

F
' v

F
)
x/L

!;2] dt. (18)

The potential energy of the #uid due to gravity is

<
F
"P

L

0

o
F
Agw dx. (19)

The rotating #uid-tube cantilever system is considered to be holonomic. The position
vector and the potential energy are considered to be explicit functions of N generalized
coordinates q

i
(t) only. The velocity vector and the kinetic energy are considered to be

explicit functions of the generalized coordinates q
i
(t) and their time derivatives

qR
i
(t)"dq

i
(t)/dt. Following Benjamin (1961a), application of the Lagrange equations on the

tube portion of the #uid-tube cantilever and on the #owing #uid mass yields the Lagrange
equations for the combined #uid-tube system:

d

dt A
L¸

FT
LqR

i
B!

L¸
FT

Lq
i

#o
F
A;CvF '

Lr

Lq
i
D
x/L

"0, i"1, 2,2, N. (20)

In this case, v
F
is given by equation (10) and ¸

FT
is the Lagrangian function of the #uid-tube

cantilever system,

¸
FT

"¹
T
#¹

F
!<

T
!<

F
. (21)

Consider two distinct times t
1

and t
2
, when the variations of the generalized coordinates

are assumed to be zero, i.e.,

d[q
i
(t
1
)]"d[q

i
(t
2
)]"0, i"1, 2,2, N. (22)

Equations (20) are multiplied by dq
i
, added together, and integrated with respect to time

t over the time interval [t
1
, t

2
] to yield

P
t2

t1
C

d

dt A
L¸

FT
LqR

i
B!

L¸
FT

Lq
i
D dq

i
dt#P

t2

t1

o
F
A;CvF '

Lr

Lq
i

dq
iD

x/L

dt"0, (23)
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where, the double-index summation convention was used. Using a well-known procedure,
equation (23) yields the statement of Hamilton's principle for the case of the horizontally
rotating #uid-tube cantilever system:

d P
t2

t1

¸
FT

dt!P
t2

t1

o
F
A;[v

F
' dr]

x/L
dt"0. (24)

Variation of the terms in Equation (24) yields the following expression (Panussis 1998):

P
t2

t1
P

L

0

[F
v
(x; t) dv#F

w
(x; t) dw] dxdt"0. (25)

Since dv and dw are arbitrary, in order for equation (25) to hold, F
v

and F
w

must be
identically equal to zero, yielding respectively the following nonlinear integrodi!erential
equations of motion in v(x; t) and w (x; t), where terms of order e4 and higher have been left
out;

EI
L4v
Lx4

#(m
T
#o

F
A)

L2v
Lt2

#2o
F
A;

L2v
LxLt

#o
F
A;2

L2v
Lx2

!(m
T
#o

F
A))2

0
v#(m

T
#o

F
A))2

0
x

Lv

Lx

#1
2
(m

T
#o

F
A))2

0
(x2!¸2)

L2v

Lx2

#2o
F
A;)

0
#o

F
A;)

0A
Lv

LxB
2
#2o

F
A;)

0

L2v
Lx2

(v!v
L
)

!2(m
T
#o

F
A) )

0

L2v
Lx2 AP

L

x

Lv

Lt
dtB

#2(m
T
#o

F
A))

0P
x

0

L2v
Lt2

Lv

Lt
dt!o

F
A;)

0A
Lw

LxB
2

!2(m
T
#o

F
A))

0

Lw

Lx

Lw

Lt
#2(m

T
#o

F
A))

0P
x

0

L2w
Lt2

Lw

Lt
dt"0, (26)

where v
L
"v(¸; t), and

EI
L4w
Lx4

#(m
T
#o

F
A)A

L2w
Lt2B#2o

F
A;

L2w
LxLt

#o
F
A;2

L2w
Lx2

#(m
T
#o

F
A)g#(m

T
#o

F
A))2

0
x

Lw

Lx
#1

2
(m

T
#o

F
A))2

0
(x2!¸2)

L2w
Lx2

#2o
F
A;)

0

L2w

Lx2
(v!v

L
)#2o

F
A;)

0

Lv

Lx

Lw

Lx

#2(m
T
#o

F
A) )

0

Lv

Lt

Lw

Lx
!2(m

T
#o

F
A))

0

L2w
Lx2 AP

L

x

Lv

Lt
dtB"0. (27)
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4. NONDIMENSIONAL EQUATIONS FOR IN-PLANE AND
OUT-OF-PLANE LATERAL VIBRATIONS

A set of nondimensional variables is introduced, as follows:

f"
x

¸

(04f41), q"A
EI

m
T
#o

F
AB

1@2 t

¸2
(04q(R), (28, 29)

m(f; q)"
v(x; t)

¸

(04m(R), g(f; q)"
w(x; t)

¸

(04g(R). (30, 31)

Also, a set of nondimensional parameters is introduced as follows:
(i) nondimensional #ow velocity,

t"A
o
F
A

EI B
1@2
;¸; (32)

(ii) density ratio of the mass per unit length of the #uid o
F
A with respect to the total mass

per unit length of the #uid-tube cantilever system m
T
#o

F
A,

b"
o
F
A

m
T
#o

F
A

(04b41); (33)

(ii) speed ratio of the velocity )
0
¸ at the free end of the cantilever beam with respect to

the speed of #ow ;

C"

)
0
¸

;
. (34)

With these de"nitions, equations (26) and (27) yield, respectively,

L4m
Lf4

#t2 C1#
C2

2b
(f2!1)D

L2m
Lf2

#

t2C2

b
f

Lm
Lf

#2tb1@2
L2m
LfLq

#

L2m
Lq2

!

t2C2

b
m

#2t2C#t2CA
Lm
LfB

2
#2t2C

L2m
Lf2

(m!m
L
)!

2tC

b1@2

L2m
Lf2 P

1

f

Lm
Lq

d/#

2tC

b1@2 P
f

0

L2m
L/2

Lm
Lq

d/

!t2CA
Lg
LfB

2
!

2tC

b1@2

Lg
Lf

Lg
Lq

#

2tC

b1@2 P
f

0

L2g
L/2

Lg
Lq

d/"0 (35)

and

L4g
Lf4

#t2 C1#
C2

2b
(f2!1)D

L2g
Lf2

#

t2C2

b
f

Lg
Lf

#2tb1@2
L2g
LfLq

#

L2g
Lq2

#A
¸3

EIB (m
T
#o

F
A)g

#2t2C
L2g
Lf2

(g!g
L
)#2t2C

Lm
Lf

Lg
Lf

#

2tC

b1@2

Lm
Lq

Lg
Lf

!

2tC

b1@2

L2g
Lf2 P

1

f

Lm
Lq

d/"0, (36)

where the nondimensional position variable / is de"ned as

/"

t
¸

(04/41) and (04t4¸). (37)

At the "xed end (f"0) of the #uid-tube cantilever system, the geometric boundary
conditions for the in-plane displacement and slope, are,

m(0; q)"0 and
Lm (0; q)

Lf
"0. (38, 39)
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At the free end (f"1) of the #uid-tube cantilever system, the force boundary conditions
for the bending moment and shear force are

L2m(1; q)
Lf2

"0 and
L3m(1; q)

Lf3
"0. (40, 41)

Similarly, at the "xed end (f"0), the geometric boundary conditions for the out-of-plane
displacement and slope are

g (0; q)"0 and
Lg (0; q)

Lf
"0; (42, 43)

and at the free end (f"1) of the #uid-tube cantilever system we have

L2g (1; q)
Lf2

"0 and
L3g (1; q)

Lf3
"0. (44, 45)

Equations (35) and (36) include linear, as well as nonlinear terms, a number of which
are coupling terms between in-plane and out-of-plane displacements. The signi"cance of
the nonlinear terms in the stability of the rotating #uid-tube cantilever system cannot be
disregarded without further investigation. However, in the present work, the conditions of
stability will be determined for linearized motions of the #uid-tube cantilever, an approxi-
mation to the more general nonlinear system. Furthermore, it is assumed that the displace-
ments due to the constant terms, namely the term 2t2C in the direction of the y-axis in
equation (35) and the term (¸3/EI)(m

T
#o

F
A)g in the direction of the z-axis in equation

(36), do not a!ect the conditions of instability. Hence, leaving out the nonlinear and
constant terms in equations (35) and (36) yields the following linear uncoupled non-
dimensional di!erential equations for in-plane and out-of-plane lateral displacements,
respectively:

L4m
Lf4

#t2C1#
C2

2b
(f2!1)D

L2m
Lf2

#

t2C2

b
f

Lm
Lf

#2tb1@2
L2m
LfLq

#

L2m
Lq2

!

t2C2

b
m"0 (46)

and

L4g
Lf4

#t2 C1#
C2

2b
(f2!1)D

L2g
Lf2

#

t2C2

b
f

Lg
Lf

#2tb1@2
L2g
LfLq

#

L2g
Lq2

"0. (47)

5. LINEAR IN-PLANE LATERAL VIBRATIONS

It is assumed that the in-plane lateral vibration of the rotating #uid-tube cantilever system
is harmonic in the nondimensional complex frequency

a"a
R
#ia

I
, (48)

where a
R

and a
I

are the real and imaginary parts of a, respectively. The response of the
system is assumed to have the form

m (f; q)"e*aqk(f)"e*(aR`*aI) q k(f)"e*aRqe~aI qk(f). (49)

The threshold of instability of the system corresponds to a
I
"0. The real part a

R
becomes

the critical nondimensional circular frequency of lateral in-plane vibrations u
#3@*/

. Hence,

m(f; q)"e*u#3@*/q k(f). (50)
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Also, in the following, the nondimensional #ow velocity in the #uid-tube cantilever
system is assumed to be at its critical value, t

#3@*/
, which renders the imaginary part of

a equal to zero. The nondimensional function k (f) must satisfy equation (46) of the in-plane
motion of the #uid-tube cantilever system, and the boundary conditions in equations
(38)}(41). Following the Galerkin method, the function k(f) is considered to be of the form

k (f)"
N
+
r/1

K
r
H

r
(f). (51)

The function H
r
(f) is selected to be the rth normalized eigenfunction of the nonrotating

uniform cantilever beam (Bishop & Johnson 1960),

H
r
(f)"cosh(j

r
f)!cos(j

r
f)!p

r
[sinh(j

r
f)!sin(j

r
f)]

p
r
"

sinh(j
r
)!sin(j

r
)

cosh(j
r
)#cos(j

r
)
and cosh j

r
cos j

r
#1"0, r"1, 2,2, N. (52)

The coe$cient K
r
is associated with the rth eigenfunction. The number of modal terms

N in equation (51) needs to be large enough, so that, equation (50) adequately represents the
motion of the #uid-tube cantilever system. Substitution of equation (51) into equation (50)
yields

m(f; q)"e*u#3@*/ qA
N
+
r/1

K
r
H

r
(f)B. (53)

Equation (46) yields

N
+
r/1

K
rGAj4r!u2

#3@*/
!

t2
#3@ */

C2

b BHr
(f)

#

N
+
q/1
Ct2#3@*/A1!

C2

2bB c
rq
#

t2
#3@*/

C2

2b
e
rq
#

t2
#3@*/

C2

b
d
rq
#i 2u

#3@*/
t
#3@*/

b1@2b
rqDHq

(f)H"0,

(54)

where

b
rs
"P

1

0

dH
r
(f)

df
H

s
(f) df, c

rs
"P

1

0

dH2
r
(f)

df2
H

s
(f) df, r, s"1, 2,2, N, (55, 56)

d
rs
"P

1

0

f
dH

r
(f)

df
H

s
(f) df, e

rs
"P

1

0

f2
dH2

r
(f)

df2
H

s
(f) df, r, s"1, 2,2, N. (57, 58)

Formulae for the exact computation of b
rs

and c
rs

are given in Gregory & PamKdoussis
(1966a). Proceeding with the Galerkin method, equation (54) yields

K
sAj4s!u2

#3@*/
!

t2
#3@*/

C2

b B
#

N
+
r/1

K
rCt2#3@*/A1!

C2

2bB c
rs
#

t2
#3@*/

C2

2b
e
rs
#

t2
#3@*/

C2

b
d
rs
#i2u

#3@*/
t
#3@*/

b1@2b
rsD"0,

s"1, 2,2, N. (59)
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Equations (59) represent a homogeneous linear system of N equations for the N coe$-
cients K

r
,

[g] MKN"M0N, (60)

where

g
sr
"Aj4

s
!u2

#3@*/
!

t2
#3@*/

C2

b Bd
sr
#t2

#3@*/ A1!
C2

2bBc
rs
#

t2
#3@*/

C2

2b
e
rs

#

t2
#3@*/

C2

b
d
rs
#i2u

#3@*/
t
#3@*/

b1@2b
rs
, (61)

in which d
sr

is Kronecker's delta. In order that the coe$cients K
r
to have nonzero values,

the determinant of matrix [g] must be zero, i.e.,

det[g],Re(det[g])#iIm(det[g])"0. (62)

Equation (62) is the characteristic equation for linear lateral in-plane vibrations of the
horizontally rotating #uid-tube cantilever system. In equation (61), the elements g

sr
of [g]

are functions of the critical nondimensional speed of #ow t
#3@*/

, critical nondimensional
circular frequency of lateral in-plane vibrations u

#3@*/
, speed ratio C, and density ratio b. The

determinant det[g], as well as the absolute value abs(det[g]) are functions of the same
variable set (t

#3@*/
, u

#3@*/
, C, b). For a given set of values C and b, the threshold of instability

corresponds to a set of values (t
#3@*/

, u
#3@*/

), which necessarily nulli"es the value of
abs(det[g]), namely,

abs(det[g(t
#3@*/

, u
#3@*/

, C, b)])"0. (63)

If t
#3@*/

and u
#3@*/

were plotted in the (C, b)-plane, this would result in two three-
dimensional plots, i.e., t

#3@*/
would be represented by a surface in the (t

#3@*/
, C, b)-space.

Correspondingly, u
#3@*/

would be represented by a surface in the (u
#3@*/

, C, b)-space.
However, in this case, the density ratio b was assigned speci"c values, namely, b"0)2, 0)5
and 0)8. Let it be recalled that b3[0, 1]. Hence, the numerical results for t

#3@*/
and

u
#3@*/

were plotted as curves in the planes (t
#3@*/

, C) and (u
#3@*/

, C), respectively, for each of
the aforementioned b values. The numerical data presented in this work were generated in
the computational environment of Mathematica. The data presented in this section were
generated using equation (63). An example is demonstrated in Figure 2. In Figure 2(a),
contours of the absolute value abs(det[g]) are plotted for (b, C)"(0)2, 0)65) in the region
t3[17, 24] and u3[84, 160]. Alternatively, in Figure 2(b), a three-dimensional plot of the
inverse of the absolute value Abs(det[g]) is created for (b, C)"(0)2, 0)65) in the region
t3[16, 24] and u3[80, 160]. Both Figures 2(a) and 2(b) reveal the location of three
potential roots of equation (63). Suitable regions and plotting scales are determined
manually by trial and error. Once the location of a potential root is determined, a minimiz-
ation routine within Mathematica is then employed to yield a more accurate set of values
for the t

#3@*/
and u

#3@*/
.

In order to proceed with the computations, it is important to decide how many modal
terms will be retained in equation (51). To this end, the e!ect of the number of modes N on
the critical values (t

#3@*/
, u

#3@**/
) must be determined. Numerical results were obtained for

a range of values of the relative speed ratio C from C"0)5 to approximately C"0)8, for an
increasing number of modes N, starting with N"3 up to N"9 (Panussis 1998). At the
same time, the density ratio b was kept equal to 0)2. Results for the 3- and 9-mode
approximations are displayed in Figure 3.



Figure 2. Linear lateral in-plane vibrations with seven Galerkin terms, b"0)2 and C"0)65. (a) A contour plot
of abs(det[g]) in the plane (t, u) generated by the Mathematica function ContourPlot. (b) A three-dimensional plot

of (abs(det[g]))~1 generated by the Mathematica function Plot3D.
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In the 3-mode Galerkin approximation, the stability curves for t
#3@*/

and u
#3@*/

are
continuous, without irregularities or multiple root regions. Multiple roots show up for both
t
#3@*/

and u
#3@*/

in the 4-mode approximation (Panussis 1998). As the number of modes
N increases, additional root multiplicity regions develop (Panussis 1998). Also, as the
number of modes N increases, the range of the most recently developed multiple roots
narrows, whereas earlier multiple roots remain less a!ected (Panussis 1998). The di!erence
between the 7-mode approximation and the 9-mode approximation is mainly in the second
multiplicity region in Figure 3. The latter extends from C"0)58 to C"0)69 with the
7-mode approximation (Panussis 1998). It extends from C"0)585 to C"0)67 with the



Figure 3. Stability curves for the horizontally rotating #uid-tube cantilever system, for b"0)2: the 3-mode ( ' ' ' )
and 9-mode ( . . . ) Galerkin approximations are shown.
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9-mode approximation in Figure 3. Hence, to use seven terms in the Galerkin approxima-
tion for all subsequent numerical calculations, with the understanding that higher C values
may require higher modal numbers N. Here the reader is also referred to PamKdoussis (1998)
for a similar discussion on the nonrotating system.

In another set of numerical results, the in-plane critical nondimensional speed of #ow
t
#3@*/

and critical nondimensional circular frequency of lateral vibrations u
#3@*/

were com-
puted in a 7-mode approximation. The speed ratio C ranged from C"0)0 to approximately
C"0)8 and the density ratio received values b"0)2, 0)5 and 0)8 (Figures 4 and 5). Table 1
contains selected numerical data to demonstrate the e!ect of the number of modal terms
N to the quality of the solution for selected b values. The data indicate that higher b values
require the inclusion of higher modal terms in the truncated series for equivalent conver-
gence. For example, for (b, C)"(0)2, 0)5), "ve modal terms are enough to yield a solution
with a variation of 0)1, whereas, more than eight modal terms are required in the case
(b, C)"(0)8, 0)5).



TABLE 1

The horizontally rotating #uid-tube cantilever in linear in-plane lateral vibrations. The e!ect of
the number of modal terms N on the critical nondimensional speed of #ow t

#3@*/
and the critical

nondimensional frequency of lateral vibrations u
#3@*/

N b"0)2, C"0 b"0)5 C"0 b"0)8 C"0
t
#3@*/

u
#3@*/

t
#3@*/

u
#3@*/

t
#3@*/

u
#3@*/

4 5)60124 13)6835 9)4562 28)1971 14)6361 55)8932
5 5)59010 13)7566 9)35931 26)5783 14)188 51)8765
6 5)59379 13)7053 9)32963 26)6624 13)7203 46)586
7 5)59081 13)7253 9)33096 26)4999 13)5168 45)0542
8 5)59221 13)7111 9)32357 26)5414 13)5348 45)1306

N b"0)2 C"0)5 b"0)5 C"0)5 b"0)8 C"0)3
t
#3@*/

u
#3@*/

t
#3@*/

u
#3@*/

t
#3@*/

u
#3@*/

4 10)8740 37)2737 11)7109 34)0078 15)4179 60)5048
5 10)9067 36)3435 14)1353 56)7265 15)1215 56)0155
6 10)8995 36)381 13)8316 52)3567 14)6949 50)5191
7 10)9005 36)2483 13)7605 51)9441 14)3402 47)6959
8 10)8943 36)2709 13)7588 51)7445 14)3663 47)8712

Figure 4. Critical nondimensional speed of #ow t
#3

for the horizontally rotating #uid-tube cantilever system,
using a 7-mode Galerkin approximation. (a) In-plane for density ratio b"0)2; (b) out-of-plane for b"0)2; (c)

in-plane for b"0)5; (d) out-of-plane for b"0)5; (e) in-plane for ratio b"0)8; (f) out-of-plane for b"0)8.
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Figure 5. Critical nondimensional circular frequency of lateral vibrations u
#3

for the horizontally rotating
#uid-tube cantilever system, using a 7-mode Galerkin approximation. (a) In-plane for b"0)2; (b) out-of-plane for
b"0)2; (c) in-plane for b"0)5; (d) out-of-plane for b"0)5; (e) in-plane for b"0)8; (f) out-of-plane for b"0)8.
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6. LINEAR OUT-OF-PLANE LATERAL VIBRATIONS

As in the case of in-plane lateral vibrations, it is assumed that the horizontally rotating
#uid-tube cantilever system vibrates at the out-of-plane critical nondimensional circular
frequency of lateral vibrations u

#3@065
, and the #uid #ows at the out-of-plane critical

nondimensional speed of #ow t
#3@065

. In this case, the response of the system is assumed to
have the form

g(f; q)"e*u#3@065qa(f). (64)

The function a(f) must be such that equation (64) satis"es the linear out-of-plane
di!erential equation (47), and the boundary conditions in equations (42)} (45). Using the
Galerkin method, the function a(f) is considered to be of the form

a(f)"
N
+
r/1

A
r
H

r
(f). (65)

As in the case of in-plane lateral vibrations discussed in the previous section, the function
H

r
(f) is selected to be the rth normalized eigenfunction of the nonrotating uniform
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cantilever beam (Bishop and Johnson 1960) in equation (52). The nondimensional coe$c-
ient A

r
is associated with the rth eigenfunction. The number of modal terms N in equation

(65) must be large enough for equation (64) to adequately represent the out-of-plane motion
of the system. Substitution of equation (65) into (64) yields

g (f; q)"e*u#3@065qA
N
+
r/1

A
r
H

r
(f)B. (66)

Substitution in equation (47) yields

N
+
r/1

A
rGAj4r!u2

#3@065BHr
(f)#

N
+
q/1
Ct2

#3@065A1!
C2

2bBc
rq

#

t2
#3@065

C2

b
d
rq
#

t2
#3@065

C2

2b
e
rq
#i 2u

#3@065
t
#3@065

b1@2b
rqDHq

(f)H"0, (67)

and hence

A
s
(j4

s
!u2

#3@065
)

#

N
+
r/1

A
rCt2

#3@065A1!
C2

2bBc
rs
#

t2
#3@065

C2

2b
e
rs
#

t2
#3@065

C2

b
d
rs
#i2u

#3@065
t
#3@065

b1@2b
rsD"0,

s"1, 2,2, N. (68)

Equations (68) represent a homogeneous linear system of N equations in N coe$cients
A

r
,

[ f ] MAN"M0N, (69)

where

f
sr
"(j4

s
!u2

#3@065
)d

sr
#t2

#3@065A1!
C2

2bBc
rs
#

t2
#3@065

C2

2b
e
rs

#

t2
#3@065

C2

b
d
rs
#i2u

#3@065
t
#3@065

b1@2b
rs
. (70)

d
sr

being Kronecker's delta. For the coe$cients A
r
to have nonzero values, the determinant

of matrix [ f ] must be zero, i.e.,

det[ f ],Re (det[ f ])#iIm(det[ f ])"0. (71)

Equation (71) is the characteristic equation for linear out-of-plane lateral vibrations of
the horizontally rotating #uid-tube cantilever system. Following the same reasoning
as in the case of the linear in-plane vibrations, for given values of C and b, the threshold
of instability corresponds to a critical set (t

#3@065
, u

#3@065
), which nulli"es the value of

abs(det[ f ]), namely,

abs(det[ f (t
#3@065

, u
#3@065

, C, b)])"0. (72)

The critical values of the out-of-plane nondimensional speed of #ow t
#3@065

and non-
dimensional circular frequency of lateral vibrations u

#3@065
were computed using seven

modal terms for the speed ratio C ranging from C"0)0 to approximately C"0)8 and
density ratio b"0)2, 0)5 and 0)8. The results are presented in Figures 4 and 5. The e!ect of
the number of modes N on the critical values (t

#3@065
, u

#3@065
) is partially demonstrated in

Tables 2 and 3.



TABLE 2
The horizontally rotating #uid-tube cantilever in linear out-of-plane lateral vibrations. The
e!ect of the number of modal terms N on the critical nondimensional speed of #ow t

#3@065
and

critical nondimensional circular frequency of lateral vibrations u
#3@065

N b"0)2 C"0 b"0)5 C"0 b"0)8 C"0
t
#3@065

u
#3@065

t
#3@065

u
#3@065

t
#3@065

u
#3@065

2 5)41891 14)0462 8)24857 11)37 9)76314 9)01654
3 5)59747 14)0798 9)47306 29)4416 11)1012 27)3969
4 5)60124 13)6835 9)45620 28)1971 14)5223 55)8932
5 5)5901 13)7566 9)35931 26)5783 14)188 51)8765
6 5)59379 13)7053 9)32963 26)6624 13)7203 46)586
7 5)59081 13)7253 9)33096 26)4999 13)5168 45)0542
8 5)59221 13)7111 9)32357 26)5414 13)5348 45)1306

N b"0)2 C"0)5 b"0)5 C"0)5 b"0)8 C"0)3
t
#3@065

u
#3@065

t
#3@065

u
#3@065

t
#3@065

u
#3@065

2 8)85269 20)7552 15)8669 14)2362 10)7858 9)2501
3 11)0311 43)3031 11)529 35)8129 11)679 28)1263
4 11)1291 40)0175 13)2913 41)5854 15)4723 60)7569
5 11)2265 39)1201 14)3233 58)889 15)2101 56)4993
6 11)2095 39)1277 14)0381 54)3386 14)8174 51)1741
7 11)2186 39)0138 13)9468 53)6934 14)4386 48)1169
8 11)2078 39)0189 13)9514 53)5701 14)4642 48)2944
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7. IN-PLANE VERSUS OUT-OF-PLANE LINEAR LATERAL VIBRATIONS

Comparison between the linear in-plane and out-of-plane lateral vibration types in Figures
4 and 5 reveals that for a speci"c set of values for b and C, the conditions of instability in the
out-of-plane type in most cases correspond to higher t

#3
and u

#3
values than in the in-plane

type. Namely, the horizontally rotating #uid-tube cantilever system is less sti! when it
vibrates in-plane than out-of-plane. This is evident in the single valued regions of the
stability curves, i.e., regions without multiplicity. In the multiplicity regions, one must
distinguish the lower and upper from the middle segment of the multiplicity bend. In the
lower and upper segments, the in-plane t

#3
and u

#3
values are lower that the out-of-plane

ones. In the middle segment, the opposite is true. The di!erence in the results between
in-plane and out-of-plane is considerably reduced for the density ratio b"0)8 in Figure
4(e,f ) and Figure 5(e, f ). However, for a given density ratio b, the corresponding in-plane
stability curves t

#3
and u

#3
are always located to the right of the out-of-plane ones. Hence,

a rotating #uid-tube cantilever system with a given density ratio b and #ow velocity t can in
theory become unstable, "rstly out-of-plane at a lower speed ratio C and subsequently
in-plane at a higher C value.

It should be recalled that the numerical results in this work were obtained by considering
the two types of lateral vibrations to be of small amplitude, uncoupled and linear. In
Table 1, the in-plane results obtained with N"8 vary as follows, when compared with
those obtained with N"7: for (b, C)"(0)2, 0)5), by !0)06 and 0)06%, for t

#3@*/
and

u
#3@*/

, respectively, for (b, C)"(0)5, 0)5), by !0)01 and !0)38%, respectively; for
(b, C)"(0)8, 0)3), by 0)18 and 0)37%, respectively. In Table 2, the out-of-plane results
obtained with N"8 vary as follows, when compared with those obtained with N"7: for
(b, C)"(0)2, 0)5), by !0)10 and 0)01%, for t

#3@065
and u

#3@065
, respectively: for

(b, C)"(0)5, 0)5), by 0)03 and !0)23%, respectively; for (b, C)"(0)8, 0)3), by 0)18 and
0)37%, respectively. In row N"7 in Table 2, the value of the out-of-plane critical



TABLE 3

The horizontally rotating #uid-tube cantilever in linear out-of-plane lateral vibrations. The e!ect of
the number of modal terms N on the error (%) in the computation of the critical nondimensional
speed of #ow t

#3@065
and critical nondimensional circular frequency of lateral vibrations u

#3@065
. Data

are from Table 2

N b"0)2 C"0 b"0)5 C"0 b"0)8 C"0
(*t

#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

(*t
#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

(*t
#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

3 3)295 (%) 0)239 (%) 14)845 (%) 158)941 (%) 13)705 (%) 203)852 (%)
4 0)067 !2)815 !0)178 !4)227 30)817 104)013
5 !0)198 0)534 !1)025 !5)741 !2)302 !7)186
6 0)066 !0)373 !0)317 0)316 !3)296 !10)198
7 !0)053 0)146 0)014 !0)609 !1)483 !3)288
8 0)025 !0)103 !0)079 0)157 0)133 0)170

N b"0)2 C"0)5 b"0)5 C"0)5 b"0)8 C"0)3
(*t

#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

(*t
#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

(*t
#3
/t

#3
)
065

(*u
#3
/u

#3
)
065

3 24)607 (%) 108)637 (%) !27)339 (%) 151)562 (%) 8)281 (%) 204)065 (%)
4 0)888 !7)587 15)286 16)118 32)480 116)015
5 0)875 !2)243 7)764 41)610 !1)695 !7)008
6 !0)151 0)019 !1)991 !7)727 !2)582 !9)425
7 0)081 !0)291 !0)65 !1)187 !2)556 !5)974
8 !0)096 0)013 0)033 !0)230 0)177 0)369
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nondimensional speed of #ow t
#3@065

is 2)98% higher than the in-plane value in Table 1,
when (b, C)"(0)2, 0)5). The corresponding percentage increase for the critical nondimen-
sional circular frequency of vibration u

#3@065
is 7)56%. For (b, C)"(0)5, 0)5), the numbers

are 1)37 and 3)77%, respectively, and for (b, C)"(0)8, 0)3), they are 0)50 and 0)51%,
respectively. These results show that, for the cited examples, the di!erence in the critical
values t

#3
and u

#3
between the out-of-plane and in-plane types is reduced as the density

ratio b is increased. Namely, the #ow of relatively denser #uids reduces the e!ect of
the additional term [!(t2

#3@*/
C2/b)m ] in equation (46). However, for (b, C)"(0)8, 0)3), the

di!erence between the out-of-plane and in-plane results is comparable with the di!erence
between the results obtained with seven modal terms and those obtained with eight terms.
This is an indication that for higher b values, a larger number N, i.e., higher-order modal
terms are required to obtain reliable results. The latter can be seen in Table 3, which
contains the error in the computation of the out-of-plane critical nondimensional speed of
#ow and critical nondimensional circular frequency of lateral vibrations. The data in
Table 3 were computed using the results from Table 2. A similar e!ect was observed with
regard to the speed ratio C as the modal number N increases (Panussis 1998). Therefore,
higher-order modal terms a!ect the shape of the stability curves in regions of higher
C values more than in regions of lower C values.

8. ROTATING VERSUS NONROTATING FLUID-TUBE
CANTILEVER SYSTEM

The in-plane and out-of-plane values of the critical nondimensional speed of #ow t
#3

and
critical nondimensional circular frequency of lateral vibrations u

#3
, represented by the

stability curves in Figures 4 and 5, respectively, for the rotating system are higher than in



Figure 6. Stability curves for out-of-plane lateral vibrations for the horizontal nonrotating #uid-tube cantilever
system (speed ratio C,)

0
¸/;"0): ' ' ' , 7-mode Galerkin approximation; **, exact results adapted from

Gregory & Paidoussis (1966a).
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the nonrotating case )
0
"0(C,)

0
¸/;"0). In the case )

0
"0(C"0), the linear in-

plane di!erential equation (46) and the out-of-plane equation (47) yield the same equation
of motion

L4m
Lf4

#t2
L2m
Lf2

#2tb1@2
L2m
LfLq

#

L2m
Lq2

"0. (73)

Equation (73) represents the nondimensional form of the well-known di!erential equa-
tion of motion of the nonrotating #uid-tube cantilever without internal or external damping
(Niordson 1953; Benjamin 1961a; Gregory & PamKdoussis 1966a). Tables 1 and 2 contain the
critical values (t

#3
, u

#3
) for the cases (b, C)"(0)2, 0) and (b, C)"(0)5, 0) for N"7 modal

terms; namely, (t
#3
, u

#3
)"(5)59081, 13)7253) and (t

#3
, u

#3
)"(9)33096, 26)4999), respectively.

These results can also be found in the stability curves in Figures 4 and 5.
Figure 6 compares the results between the present work and the analytical solution for

the nonrotating #uid-tube cantilever system (Gregory & Paidoussis 1966a). Up to approx-
imately b"0)8, the 7-mode Galerkin approximation compares well with the exact solution.
For values of the density ratio b higher than 0)8, a deviation of the numerical results from
the exact solution is noted, both for the critical nondimensional speed of #ow t

#3
and the
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critical nondimensional circular frequency of lateral vibrations u
#3
. It was shown (Gregory

& PamKdoussis 1966a) that the multiplicity in the regions b"0)28 and 0)65 is due to the
behavior of modal terms of higher order. In this case, the e!ect only becomes evident when
an adequate number of modal terms are included. A similar observation can be made in the
case of the rotating #uid-tube cantilever system based on the numerical results in Panussis
(1998).

9. THE ROTATING FLUID-TUBE CANTILEVER VERSUS THE ROTATING
UNIFORM CANTILEVER WITHOUT FLOW

The numerical results for the critical nondimensional circular frequency of out-of-plane
lateral vibrations u

#3@065
of the horizontally rotating #uid-tube cantilever system are com-

pared with the corresponding critical values u
#3@/&

of a rotating uniform cantilever beam
without internal #ow. For the out-of-plane case, the element f

sr
in the coe$cient matrix [ f ],

is given in equation (70). The nondimensional angular speed of rotation g
0

of the rotating
uniform cantilever beam has been expressed in terms of the out-of-plane nondimensional
speed of #ow t

065
and the speed ratio C in equation (A3). At the onset of out-of-plane lateral

instability, the nondimensional speed of #ow t
065

receives the critical value t
#3@065

and
equation (A3) yields

g
0
"t

#3@065
CA

1

b
!1B

1@2
. (74)

Substitution for t
#3@065

C from equation (74) into equation (70) yields

f
sr
"(j4

s
!u2

#3@065
)d

sr
#At2

#3@065
!

g2
0

2(1!b)Bc
rs
#

g2
0

2(1!b)
e
rs

#

g2
0

(1!b)
d
rs
#i2u

#3@065
t
#3@065

b1@2b
rs
. (75)

In the case of the rotating uniform cantilever beam without #ow, the nondimensional
speed of #ow t is no longer present in the problem. In that case, the critical out-of-plane
nondimensional speed of #ow t

#3@065}
is no longer present in equation (75). The latter yields

f
sr@/&

"(j4
s
!u2

#3@/&
)d

sr
!

g2
0

2(1!b)
c
rs
#

g2
0

2(1!b)
e
rs
#

g2
0

(1!b)
d
rs
. (76)

The characteristic equation for linear out-of-plane lateral vibrations of the horizontally
rotating tubular cantilever without #ow is

det[ f
/&

]"0. (77)

Equation (77) was solved numerically with a 7-mode approximation for the critical
nondimensional circular frequency of out-of-plane lateral vibrations without internal #ow
u

#3@/&
in the range g

0
"M0, 1, 2,2, 12N and for density ratio values b"M0)0001, 0)2, 0)5, 0)8N

(Figure 7 and Table 4). The presence of non#owing #uid inside the rotating uniform
cantilever tube a!ects the threshold of instability of the system. The numerical results show
that, when maintaining the nondimensional angular speed of rotation g

0
constant, the

higher the density ratio b, the higher the critical u
#3@/&

value.



Figure 7. The critical nondimensional circular frequency u
#3@/&

for out-of-plane lateral vibrations of a rotating
uniform cantilever tube containing a non#owing #uid, using a 7-mode Galerkin approximation for the values of

the density ratio b"M0)0001, 0)2, 0)5, 0)8N. Data are from Table 4.

TABLE 4

The exact critical nondimensional circular frequency u
#3@/&

of out-of-plane lateral vibrations of
a rotating uniform cantilever linear Euler}Bernoulli beam in terms of the nondimensional angular
speed of rotation g

0
")

0
¸2(m

T
/EI)1@2, adapted from Du et al. (1994). The third column contains the

corresponding u
#3@/&

values using the approximate formula in Peters (1973). The last four columns
contain the corresponding u

#3@/&
values of a rotating uniform cantilever tube containing a non#owing

#uid, computed numerically using a 7-mode Galerkin approximation for di!erent values of the
density ratio b"o

F
A/(m

T
#o

F
A)

Rotating uniform cantilever beam Rotating uniform cantilever tube containing non#owing
#uid with density ratio b"o

F
A/(m

T
#o

F
A)

g
0

(u
#3@/&

)
%9!#5

(u
#3@/&

)
!11309*.!5%

(u
#3@/&

)
!11309*.!5%

using 7-mode Galerkin

(Du et al. 1994) (Peters 1973) b"0)0001 b"0)2 b"0)5 b"0)8

0 3)51602 3)516000 3)51602 3)51602 3)51602 3)51602
1 3)68165 3)681615 3)68166 3)72185 3)83984 4)27794
2 4)13732 4)137084 4)1374 4.27794 4)67317 5)98588
3 4)79728 4)796436 4)7974 5)06477 5)78918 8)02347
4 5)58500 5)583156 5)5852 5)98588 7)04398 10)1719
5 6)44954 6)446493 6)4498 6)98291 8)36733 12)3629
6 7)36037 7)356137 7)3607 8)02347 9)72617 14)5732
7 8)29964 8)294398 8)3001 9)08978 11)1045 16)7936
8 9)25684 9)250850 9)2575 10)1719 12)4943 19)0202
9 10)2257 10)219212 10)2266 11)2641 13)8913 21)2511

10 11)2023 11)195597 11)2035 12)3629 15)293 23)4851
11 12)1843 12)177535 12)1859 13)4664 16)698 25)7218
12 13)1702 13)163413 13)1721 14)5732 18)1055 27)9608
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10. CONCLUSIONS

This work investigated the conditions for instability of a horizontally rotating #uid-tube
cantilever system, a hybrid of the "xed #uid-tube cantilever and the rotating uniform
cantilever beam without inner #ow. The numerical analysis was based on a linear approxi-
mation using the Galerkin method. The quality of the convergence does not improve
uniformly across the range of values of the speed ratio C, or across the range of values of the
density ratio b. As the number of modal terms N increases, the convergence of the solution
"rst improves for the lower C values and later for the higher ones. So is the case for the
density ratio b also.

In the case of linear in-plane, as well as out-of-plane lateral vibrations, the numerical
results show that the horizontal rotational motion has a sti!ening e!ect on the #uid-tube
cantilever system. However, in both cases, values C(0)2 do not considerably a!ect the
threshold of instability of the #uid-tube system. For a given speed ratio C, higher density
ratios b yield higher critical values, depending on the particular set (C, b). For a given set
(C, b), the critical nondimensional values in the in-plane type are lower than in the
out-of-plane type, the di!erence reducing as the density ratio b increases. The former is true
throughout, except for the middle segment of the multiplicity folds in the stability curves,
where the opposite is true.

The results found in the present work were compared to the analytical solution for
the nonrotating #uid-tube cantilever system. For up to approximately b"0)8, the 7-mode
approximation compares well with the exact solution. For values b higher than 0)8,
the approximate solution yields critical values higher than the exact solution.

The approximate theory developed in this work gave similar results with an exact and an
earlier approximate solution, in the case of the rotating uniform cantilever beam without
internal #ow. The stability of the system is a!ected by the presence of non#owing #uids inside
the rotating uniform cantilever. For a given nondimensional angular speed of rotation,
higher b values yield higher critical nondimensional circular frequency of lateral vibrations.
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APPENDIX A

An approximate closed-form expression for the critical nondimensional circular frequency of out-of-
plane lateral vibration u

#3@/&
of a rotating #exible uniform cantilever beam without internal #ow is

given by Peters (1973):

u2
#3@/&

"g
0
#12)3623#

3J2

n
g1@2
0

arctanC
0)19334ng1@2

0
3J2 D. (A1)

The value of function arctan[ ] must be returned in radians.
In equation (A1) g

0
is the nondimensional speed of rotation of the cantilever beam, in this case

a tubular beam, de"ned as (Peters 1973)

g
0
")

0
¸2A

m
T

EIB
1@2

. (A2)

Introducing equations (32)} (34) into equation (A2) yields

g
0
"tCA

1

b
!1B

1@2
. (A3)

APPENDIX B: NOMENCLATURE

A cross-sectional area of the #ow
MAN out-of-plane non-dimensional Galerkin coe$cient vector
a(f) response function for out-of-plane lateral vibrations
[b] coe$cient matrix of size N]N
C speed ratio: the ratio of cantilever tip speed (tangential velocity) to #uid radial

velocity
[c] coe$cient matrix of size N]N
D internal diameter of the rotating #uid-tube cantilever
[d] coe$cient matrix of size N]N
E modulus of elasticity of the tube material
e
n
(x; t) unit vector normal to the de#ected elastic axis of the tubular cantilever

e
t
(x; t) unit vector tangent to the de#ected elastic axis of the tubular cantilever

[e] coe$cient matrix of size N]N
[ f ] Galerkin matrix of size N]N
[g] Galerkin matrix of size N]N
g acceleration due to gravity
MH(f)N normalized eigenfunction vector of the #exible cantilever beam
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I second moment of inertia of the axisymmetric cross section of the #uid-tube
cantilever with respect to one of the axes of symmetry

i (i) complex number unit; (ii) Index
MKN in-plane non-dimensional Galerkin coe$cient vector
k(f) response function for in-plane lateral vibrations
¸ length of the tube
m

T
mass per unit length of the tube portion of the #uid-tube cantilever

N number of modes
q
i

generalized coordinate
q index
R(x; t) total curvature of the displaced elastic axis.
r(x; t) position vector of the displaced #uid-tube element
r index
s (i) tube length measured on the de#ected elastic axis; (ii) index
¹

F
(t) kinetic energy of the #uid contained at any time within the tube

¹Q
&-69

(t) e%ux of kinetic energy through the control surface
¹

*/
(t) in#ow of kinetic energy through the control surface

¹
065

(t) out#ow of kinetic energy through the control surface
¹

T
(t) kinetic energy of the tube portion of the #uid-tube cantilever

t time variable
; dimensional space-average #ow velocity in the tube
u(x; t) dimensional axial displacement
<

F
(t) potential energy of the #uid portion of the #uid-tube cantilever

<
T
(t) potential energy of the tube portion of the #uid-tube cantilever

v
F
(x; t) velocity vector of the #uid element

v
T
(x; t) velocity vector of the tube element

v(x; t) in-plane displacement along the y-axis
w(x; t) out-of-plane displacement along the z-axis
x coordinate position on the x-axis
a nondimensional complex circular frequency of lateral vibrations
b density ratio
d Kroneckers delta ; see equation (33)
f nondimensional axial position variable
g(f; q) nondimensional displacement variable for out-of-plane lateral vibrations
g
0

nondimensional angular speed of rotation of the rotating #uid-tube cantilever
beam

j
r

the rth eigenvalue of the #exible cantilever beam
m(f; q) nondimensional displacement variable for in-plane lateral vibrations
o
F

#uid mass per unit volume
p
r

nondimensional coe$cient in the normalized eigenfunctions of the #exible
cantilever beam H

rq nondimensional time variable
t nondimensional speed of inner #ow
t
#3

critical nondimensional speed of inner #ow
t
#3@*/

in-plane critical nondimensional speed of #ow of the rotating #uid-tube canti-
lever system

t
#3@065

out-of-plane critical nondimensional speed of #ow of the rotating #uid-tube
cantilever system

/ nondimensional position variable
t dimensional position variable
X

0
dimensional angular velocity vector of the rotating #uid-tube cantilever system

u nondimensional circular frequency of lateral vibration
u

#3
critical nondimensional circular frequency of lateral vibration of the rotating
#uid-tube cantilever system

u
#3@*/

value of u
#3

for in-plane lateral vibration of the rotating #uid-tube cantilever
system

u
#3@065

value of u
#3

for out-of-plane lateral vibration of the rotating #uid-tube canti-
lever system

u
#3@/&

value of u
#3

for lateral vibration of the rotating cantilever system without #uid
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